Cutaneous Papilloma and Squamous Cell Carcinoma Therapy Utilizing Nanosecond Pulsed Electric Fields (nsPEF)

نویسندگان

  • Dong Yin
  • Wangrong G. Yang
  • Jack Weissberg
  • Catherine B. Goff
  • Weikai Chen
  • Yoshio Kuwayama
  • Amanda Leiter
  • Hongtao Xing
  • Antonie Meixel
  • Daria Gaut
  • Fikret Kirkbir
  • David Sawcer
  • P. Thomas Vernier
  • Jonathan W. Said
  • Martin A. Gundersen
  • H. Phillip Koeffler
چکیده

Nanosecond pulsed electric fields (nsPEF) induce apoptotic pathways in human cancer cells. The potential therapeutic effective of nsPEF has been reported in cell lines and in xenograft animal tumor model. The present study investigated the ability of nsPEF to cause cancer cell death in vivo using carcinogen-induced animal tumor model, and the pulse duration of nsPEF was only 7 and 14 nano second (ns). An nsPEF generator as a prototype medical device was used in our studies, which is capable of delivering 7-30 nanosecond pulses at various programmable amplitudes and frequencies. Seven cutaneous squamous cell carcinoma cell lines and five other types of cancer cell lines were used to detect the effect of nsPEF in vitro. Rate of cell death in these 12 different cancer cell lines was dependent on nsPEF voltage and pulse number. To examine the effect of nsPEF in vivo, carcinogen-induced cutaneous papillomas and squamous cell carcinomas in mice were exposed to nsPEF with three pulse numbers (50, 200, and 400 pulses), two nominal electric fields (40 KV/cm and 31 KV/cm), and two pulse durations (7 ns and 14 ns). Carcinogen-induced cutaneous papillomas and squamous carcinomas were eliminated efficiently using one treatment of nsPEF with 14 ns duration pulses (33/39 = 85%), and all remaining lesions were eliminated after a 2nd treatment (6/39 = 15%). 13.5% of carcinogen-induced tumors (5 of 37) were eliminated using 7 ns duration pulses after one treatment of nsPEF. Associated with tumor lysis, expression of the anti-apoptotic proteins Bcl-xl and Bcl-2 were markedly reduced and apoptosis increased (TUNEL assay) after nsPEF treatment. nsPEF efficiently causes cell death in vitro and removes papillomas and squamous cell carcinoma in vivo from skin of mice. nsPEF has the therapeutic potential to remove human squamous carcinoma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synergistic Effects of Nanosecond Pulsed Electric Fields Combined with Low Concentration of Gemcitabine on Human Oral Squamous Cell Carcinoma In Vitro

Treatment of cancer often involves uses of multiple therapeutic strategies with different mechanisms of action. In this study we investigated combinations of nanosecond pulsed electric fields (nsPEF) with low concentrations of gemcitabine on human oral cancer cells. Cells (Cal-27) were treated with pulse parameters (20 pulses, 100 ns in duration, intensities of 10, 30 and 60 kV/cm) and then cul...

متن کامل

Calcium-independent disruption of microtubule dynamics by nanosecond pulsed electric fields in U87 human glioblastoma cells

High powered, nanosecond duration, pulsed electric fields (nsPEF) cause cell death by a mechanism that is not fully understood and have been proposed as a targeted cancer therapy. Numerous chemotherapeutics work by disrupting microtubules. As microtubules are affected by electrical fields, this study looks at the possibility of disrupting them electrically with nsPEF. Human glioblastoma cells (...

متن کامل

Nanosecond pulsed electric field induced cytoskeleton, nuclear membrane and telomere damage adversely impact cell survival.

We investigated the effects of nanosecond pulsed electric fields (nsPEF) on three human cell lines and demonstrated cell shrinkage, breakdown of the cytoskeleton, nuclear membrane and chromosomal telomere damage. There was a differential response between cell types coinciding with cell survival. Jurkat cells showed cytoskeleton, nuclear membrane and telomere damage that severely impacted cell s...

متن کامل

Synergistic effect of nanosecond pulsed electric field combined with low-dose of pingyangmycin on salivary adenoid cystic carcinoma.

Adenoid cystic carcinoma (ACC) is one of the most common malignant neoplasms in salivary glands. To evaluate the therapeutic effects of nanosecond pulsed electric field (nsPEF) combined with pingyangmycin (PYM) on salivary gland adenoid cystic carcinoma (SACC), ACC high metastatic cell line (SACC-LM) and low metastatic cell line (SACC‑83) were tested by CCK-8 assay, cell clonogenic assay, flow ...

متن کامل

Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells.

Electroporation by using pulsed electric fields with long durations compared with the charging time of the plasma membrane can induce cell fusion or introduce xenomolecules into cells. Nanosecond pulse power technology generates pulses with high-intensity electric fields, but with such short durations that the charging time of the plasma membrane is not reached, but intracellular membranes are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012